This AI Paper Proposes LongAlign: A Recipe of the Instruction Data, Training, and Evaluation for Long Context Alignment
The study diverges from previous approaches by concentrating on aligning long context, specifically by fine-tuning language models to interpret lengthy user prompts. Challenges include the absence of extensive datasets for supervised fine-tuning, difficulties in handling varied length distributions efficiently across multiple GPUs, and the necessity for robust benchmarks to assess the models’ capabilities with real-world…