Valence Labs Introduces LOWE: An LLM-Orchestrated Workflow Engine for Executing Complex Drug Discovery Workflows Using Natural Language

Drug discovery is an essential process with applications across various scientific domains. However, Drug discovery is a very complex and time-consuming process. The traditional drug discovery approaches require extensive collaboration among teams spanning many years. Also, it involved scientists from various scientific fields working together to identify new drugs that can help the medical domain….

Enhancing Large Language Models’ Reflection: Tackling Overconfidence and Randomness with Self-Contrast for Improved Stability and Accuracy

LLMs have been at the forefront of recent technological advances, demonstrating remarkable capabilities in various domains. However, enhancing these models’ reflective thinking and self-correction abilities is a significant challenge in AI development. Earlier methods, relying heavily on external feedback, often fail to enable LLMs to self-correct effectively. The Zhejiang University and OPPO Research Institute research…

CMU AI Researchers Unveil TOFU: A Groundbreaking Machine Learning Benchmark for Data Unlearning in Large Language Models

LLMs are trained on vast amounts of web data, which can lead to unintentional memorization and reproduction of sensitive or private information. This raises significant legal and ethical concerns, especially regarding violating individual privacy by disclosing personal details. To address these concerns, the concept of unlearning has emerged. This approach involves modifying models after training…